zmk
2024-08-28 1ae38ab34bcbdff622c7623119ee54bad419f4ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
 
# 导入Flask类
from flask import Flask
from flask import jsonify
from flask import request
from flask_cors import CORS
import numpy as np
import flopy
import time 
import os 
import shutil
import json
import Base as base 
import CalHead
import Predict
import ModelPeriod
import AchiveReport as achiveReport
import BigData
import OpenExcel
import DataTransf
import DataTask
 
# Flask函数接收一个参数__name__,它会指向程序所在的包
app = Flask(__name__)
CORS(app, supports_credentials=True, resources=r'/*')
 
 
#边界cell的数量
iboundCellSize = 240
iboundCellSize2= 213
 
iboundCellSizeTotle= 453
#河流cell的数量
riverCellSize = 109
 
iboundGroupSize = 10
iboundGroup={1:[1,86],2:[87,111],3:[112,142],4:[143,170],5:[171,240],
             6:[241,282],7:[283,354],8:[355,393],9:[394,436],10:[437,453]}
 
iboundName =["西侧流入","北部流入","东北部流入","东部流出","南部流出",
             "山区流入","永定河断裂流入","黄庄高丽断裂流入","八宝山断裂流入","昆明湖断裂入流"]
 
 
riverGroupSize = 4
riverGroup={1:[454,479],2:[480,505],3:[506,527],4:[528,562]}
 
riverName=['雁翅-落坡岭','落坡岭-陇驾庄','陇驾庄-三家店','三家店-卢沟桥']
 
# 获取row  colum  layer Period 参数
 
def getModel(model_name):
    model_ws=""
    if not model_name:
        model_ws = base.not_allowed_model
    else:
         model_ws = base.model_dir + model_name
 
    m = flopy.modflow.Modflow.load("modflow.nam", model_ws = model_ws,  exe_name="mf2005", verbose=True,  version="mf2005", check=False)
    return m     
 
 
@app.route('/baseparam/', methods=['GET'])
def baseparam():
    
    model_name = request.args.get('model_name')
    ml= getModel(model_name)   
    nrclp = ml.get_nrow_ncol_nlay_nper()
    dict = {"Row": nrclp[0], "Column": nrclp[1],
            "Layer": nrclp[2], "period": nrclp[3]}
    jsondata= CalHead.get_model_json(model_name)
    start_time = jsondata["start_time"]
    end_time = jsondata["end_time"]
    
    months = ModelPeriod.get_months_in_range_ym(start_time, end_time)
    dict["months"]=months
    print(jsondata)
    if "initHeader" in jsondata:
        dict["initHead"] = jsondata["initHeader"]
    else:
        dict["initHead"] = ""
    return jsonify(dict)
 
#保存初始水头
@app.route('/saveInitHead', methods=['POST'])
def saveInitHead():
    jsondata = request.get_json()
    model_name = str(jsondata['model_name'])
    initHeader =  str(jsondata['initHead'])
    
    if model_name == base.not_allowed_model or model_name in base.archive_models:
        return jsonify("本模型为验证模型,不允许修改!")
    
    jsondata= CalHead.get_model_json(model_name)
    jsondata["initHeader"] = initHeader
    
    jpath = base.model_dir + model_name +"\\prediction.json"
    with open(jpath, "w",encoding='utf-8') as outfile:
        json.dump(jsondata, outfile,ensure_ascii=False)  
   
    return jsonify("保存初始水头成功!")
 
#读取wel文件 参数为 Period
@app.route('/welList/', methods=['GET'])
def welList():
 
    period = request.args.get('period')
    model_name = request.args.get('model_name')  
    layerparam = request.args.get('layer')
    ml= getModel(model_name)
    
    wel = []
    wel = ml.wel.stress_period_data.__getitem__(kper=period)
    result = []
    welarray = []
    riverarray = []
    iboundarray = []
 
    for Layer, Row, Column, Q in wel:
      dict = {"Layer": str(Layer), "Row": str(
          Row), "Column": str(Column), "Q": str(Q)}
      result.append(dict)
 
    result_len = len(result)
    
    ibound_segment={} 
    
    if layerparam == '1':
             #边界
             
        ibound_segment={"1":[0,85],"2":[86,110],"3":[111,141],"4":[142,169],"5":[170,239]} 
             
        for i in range(0, 240):
            iboundarray.append(result[i])
        #河流
        for i in range(453, 562):
            riverarray.append(result[i])
 
        for i in range(562, result_len):
            r = int (result[i]['Row'])+1
            c =int (result[i]['Column'])+1
            name = base.getPumpWellName(str(r), str(c))
  
            result[i]['name']=name
            welarray.append(result[i])
            
    elif layerparam == '3':
        
        ibound_segment={"6":[0,41],"7":[42,113],"8":[114,152],"9":[153,195],"10":[196,212]} 
        
        for i in range(240, 453):
            iboundarray.append(result[i])
    
    ibounddict = {"name": "ibound", "data": iboundarray,"segment":ibound_segment}
    
    riversgement={"1":[0,25],"2":[26,51],"3":[52,73],"4":[74,108]}
    riverdict = {"name": "river", "data": riverarray,"segment":riversgement}
    
 
    weldict = {"name": "wel", "data": welarray}
 
    data = []
    data.append(riverdict)
    data.append(ibounddict)
    data.append(weldict)
    return jsonify(data)
 
 
#读取单个井的数据
@app.route('/wel/', methods=['GET'])
def wel():
    row_param = request.args.get('Row')
    column_param = request.args.get('Column')
    model_name = request.args.get('model_name')
    
    ml= getModel(model_name)
    result = []
    
    periods =CalHead.get_model_period(model_name)
    periods_len= len(periods)
    
    for i in range(periods_len):
       wel = []
       wel = ml.wel.stress_period_data.__getitem__(kper=i)
       for Layer, Row, Column, Q in wel:
           if str(Row) == row_param and str(Column) == column_param:
             
              start_month = periods[i] + "-01"
              end_month = ModelPeriod.last_day_of_month_start(periods[i])
              
              dict = {"StartTime": start_month, "EndTime": end_month, 
                      "Layer": str(Layer+1), "Row": str(Row), "Column": str(Column), "Q": str(Q)}
              result.append(dict)
 
    return jsonify(result)
 
 
#修改wel 文件
@app.route('/welInput', methods=['POST'])
def welInput():
    
    json = request.get_json()
    row_param = str(json['Row'])
    column_param = str(json['Column'])
    
    # model_name = request.args.get('model_name')  
    model_name = str(json['model_name'])
    
    if model_name == base.not_allowed_model or model_name in base.archive_models:
        return jsonify("本模型为验证模型,不允许修改!")
    
 
    ml= getModel(model_name)
    
    #有序的应力周期列表 json 
    data = json['data']
    
    periods =CalHead.get_model_period(model_name)
    periods_len= len(periods)
    #循环设置wel文件,更新数据
    #     lrcq = {0:[[2, 3, 4, -100.]], 1:[[2, 3, 4, -100.]]}
    lrcq = {}
    for per in range(periods_len):
        wel = []
        wel = ml.wel.stress_period_data.__getitem__(kper=per)
 
        #存储每个应力期的数据
        array2d = []
 
        for Layer, Row, Column, Q in wel:
            array = []
            if str(Row) == row_param and str(Column) == column_param:
                
                array = [Layer, Row, Column, data[per]['Q']]
            else: 
                array = [Layer, Row, Column, Q]
                
            array2d.append(array)  
            
        lrcq[per] = array2d 
 
    flopy.modflow.ModflowWel(ml,ipakcb= ml.wel.ipakcb,dtype=ml.wel.dtype,
                                 options=ml.wel.options,
                                 stress_period_data=lrcq)
    ml.write_input()
    
    return jsonify("数据更新完毕!")
 
 
#读取wel文件 参数为 Period
@app.route('/iboundList/', methods=['GET'])
def iboundList():
 
    return jsonify(iboundName)
 
 
#边界的分组数据
@app.route('/iboundData/', methods=['GET'])
def iboundData():
 
    group_id = int(request.args.get('groupId'))
    
    model_name = request.args.get('model_name')    
    ml= getModel(model_name)
    data=[]   
    index = iboundGroup[group_id]
    start_index = index[0]
    
    periods =CalHead.get_model_period(model_name)
    periods_len= len(periods)
    
    for per in range(periods_len):
       wel = []
       wel = ml.wel.stress_period_data.__getitem__(kper = per)
   
       result = []
       
       for Layer, Row, Column, Q in wel:
          dict = {"Layer": str(Layer+1), "Row": str(Row), "Column": str(Column), "Q": str(Q)}
          result.append(dict)
       
       start_month = periods[per] +"-01"
       end_month = ModelPeriod.last_day_of_month_start(periods[per]) 
      
       dict = {"StartTime": start_month, "EndTime": end_month,
                     "Layer": str(result[start_index]['Layer']), 
                         "Q": str(result[start_index]['Q'])}  
       data.append(dict)
        
    return jsonify(data)
 
 
#边界数据修改
@app.route('/iboundInput', methods=['POST'])
def iboundInput():
    
    json = request.get_json()  
    no = int(json['No'])
    #有序的应力周期列表 json 
    data = json['data']
    
    model_name = json['model_name']
    
    if model_name == base.not_allowed_model or model_name in base.archive_models:
        return jsonify("本模型为验证模型,不允许修改!")
    
    ml= getModel(model_name)
    
    index = iboundGroup[no]
    start_index = index[0]
    end_index = index[1]
    
    periods =CalHead.get_model_period(model_name)
    periods_len= len(periods)
    #循环设置wel文件,更新数据
    #     lrcq = {0:[[2, 3, 4, -100.]], 1:[[2, 3, 4, -100.]]}
    lrcq = {}
    for per in range(periods_len):
        wel = []
        wel = ml.wel.stress_period_data.__getitem__(kper=per)
 
        #存储每个应力期的数据
        array2d = []
 
        count = 1
        for Layer, Row, Column, Q in wel:
            array = []
            
            if count>= start_index and count <= end_index:
                 array = [Layer, Row, Column, data[per]['Q']]
            else:
                 array = [Layer, Row, Column, Q]
                              
            array2d.append(array)  
            count +=1
            
        lrcq[per] = array2d 
 
    flopy.modflow.ModflowWel(ml,ipakcb= ml.wel.ipakcb,
                                 dtype=ml.wel.dtype,
                                 options=ml.wel.options,
                                 stress_period_data=lrcq)
    ml.write_input()
    return jsonify("数据更新完毕!")
 
 
#读取wel文件 参数为 Period
@app.route('/riverList/', methods=['GET'])
def riverList():
 
    riverResult=[]
    for i in range(len(riverName)):
        item ={"id":i+1,"name":riverName[i]}
        riverResult.append(item)
    return jsonify(riverResult)
 
 
#河流的数据
@app.route('/riverData/', methods=['GET'])
def riverData():
    group_id = int(request.args.get('groupId')) 
    data=[]   
    index = riverGroup[group_id]
    start_index = index[0]
    
    model_name = request.args.get('model_name')  
    ml= getModel(model_name)
    
    periods =CalHead.get_model_period(model_name)
    periods_len= len(periods)
    
    for per in range(periods_len):
       wel = []
       wel = ml.wel.stress_period_data.__getitem__(kper = per)
       result = []   
       for Layer, Row, Column, Q in wel:
          dict = {"Layer": str(Layer+1), "Row": str(
              Row), "Column": str(Column), "Q": str(Q)}
          result.append(dict)
    
        
       start_month = periods[per] +"-01"
       end_month = ModelPeriod.last_day_of_month_start(periods[per]) 
 
       dict = {"StartTime": start_month, "EndTime": end_month,
                       "Layer": str(result[start_index]['Layer']), 
                           "Q": str(result[start_index]['Q'])}  
       data.append(dict)
 
    return jsonify(data)
 
 
 
#河流数据修改
@app.route('/riverInput', methods=['POST'])
def riverInput():
    
    json = request.get_json()  
    no = int(json['No'])
    #有序的应力周期列表 json 
    data = json['data']
    
    index = riverGroup[no]
    start_index = index[0]
    end_index = index[1]
    model_name = json['model_name']
    
    if model_name == base.not_allowed_model or model_name in base.archive_models:
        return jsonify("本模型为验证模型,不允许修改!")
    
    ml= getModel(model_name)
    
    periods =CalHead.get_model_period(model_name)
    periods_len= len(periods)
    
    #循环设置wel文件,更新数据
    #     lrcq = {0:[[2, 3, 4, -100.]], 1:[[2, 3, 4, -100.]]}
    lrcq = {}
    for per in range(periods_len):
        wel = []
        wel = ml.wel.stress_period_data.__getitem__(kper=per)
 
        #存储每个应力期的数据
        array2d = []
 
        count = 1
        for Layer, Row, Column, Q in wel:
            array = []
            
            if count>= start_index and count <= end_index:
                 array = [Layer, Row, Column, data[per]['Q']]
            else:
                 array = [Layer, Row, Column, Q]
                              
            array2d.append(array)  
            count +=1
            
        lrcq[per] = array2d 
 
 
    flopy.modflow.ModflowWel(ml,ipakcb= ml.wel.ipakcb,
                                 dtype=ml.wel.dtype,
                                 options=ml.wel.options,
                                 stress_period_data=lrcq)
    ml.write_input()
    return jsonify("数据更新完毕!")
 
 
#读取面 区域
@app.route('/precipitation/', methods=['GET'])
def precipitation():
    model_name = request.args.get('model_name')
    
    ml= getModel(model_name)
    period = request.args.get('period')
    
    per = int(period)
    item = ml.rch.rech.__getitem__(kper=per)
    value = item.get_value()
    item_data = np.array(value).tolist()
    
    #分组的字典下标值{"1":[(i,j)]}
    areadict1= base.getAreaDictFirstIndex()
    
    #分组的字典下标值{"1":[a,b,c,d]}
    areadict = base.getAreaDictIndexArray()
    
    #分组的字典下标值{"1":data}
    areadatadict={}
    
    for key in areadict1: 
        index1 = areadict1[key]
        i = index1[0][0]  
        j= index1[0][1]  
        
        data= item_data[i][j]
        
        areadatadict[str(key)]=  format(data,'.8f')
 
    result =[]
    result.append(areadatadict)
    result.append(areadict)
    return jsonify(result)
 
 
 
@app.route('/precipitationInput', methods=['POST'])
def precipitationInput():
     
    json = request.get_json()
    model_name= str(json['model_name'])
    if model_name == base.not_allowed_model or model_name in base.archive_models:
        return jsonify("本模型为验证模型,不允许修改!")
    period = int(json['period'])
    #有序的应力周期列表 json
    data = json['data']
    dict = {}
    for i in range(len(data)):
        q1 = data[i]['Q1']
        No = data[i]['No']
        dict[No] = q1
 
    ml= getModel(model_name)
    
    item = ml.rch.rech.__getitem__(kper=period)
    array2d = item.get_value() 
    areas= base.getAreas()
    
    for key in areas:
        
        tuples= areas[key]
        zblen= len(tuples)
        values = round(float(dict[key]),8) 
        for i in range(zblen):
            x = tuples[i][0]
            y = tuples[i][1]
            array2d[x][y]= values
        
    ml.rch.rech.__setitem__(key=period, value=array2d)
    
    rch = flopy.modflow.ModflowRch(ml,nrchop=ml.rch.nrchop,
                                       ipakcb=ml.rch.ipakcb,
                                       rech=ml.rch.rech,
                                       irch =ml.rch.irch)
    rch.write_file(check=False)
    # ml.write_input()
 
    return jsonify("降水参数修改完毕!")
    
 
#运行模型
@app.route('/runModel/', methods=['GET'])
def runModel():
    model_name = request.args.get('model_name')
    
    if model_name == base.not_allowed_model or model_name in base.archive_models:
        return jsonify("本模型为验证模型,不允许修改!")
    
    dicts= Predict.run_model_predict(model_name)
    if dicts["code"] == 400:
        return dicts["msg"]
    #导出csv文件
    CalHead.exportCsV(model_name)
    
    # #更新模型三维网格配置
    base.updateModelConfig(model_name)
    
    # #创建模型的三维网格
    filedir = base.model3d_path + model_name
    
    if not os.path.exists(filedir):
        os.makedirs(filedir, exist_ok=True)
        
    base.callModelexe() 
    #计算水资源量和水均衡
    CalHead.run_zonebudget_bal(model_name)
    CalHead.run_zonebudget_res(model_name)
    
    return jsonify(dicts["msg"])
 
#生成模型csv 文件
@app.route('/runModelCsv/', methods=['GET'])
def runModelCsv():
    
    model_name = request.args.get('model_name')  
    outpath = CalHead.exportCsV(model_name)
    result={"code":200,"msg":"生成计算结果CSV文件完毕!","output_path":outpath}
    return jsonify(result)
 
 
#创建新模型
@app.route('/saveModel/', methods=['GET'])
def saveModel():
 
    modelname = request.args.get('name')
    startTime = request.args.get('startTime')
    endTime = request.args.get('endTime')
    remark = request.args.get('remark')
    file_list = os.listdir(base.model_dir)
    for name in file_list:
        if name == modelname:
             return jsonify("模型名称已经存在,不允许重复创建!")
         
    pers = ModelPeriod.get_months_in_range_count(startTime,endTime)
    if pers > 60 :
       return jsonify("模型创建失败,最多只允许60个周期的连续预测!")
    
    dir = base.model_dir + modelname  
    
    if pers==12:
        shutil.copytree(base.predictModel,dir) 
    else:
        #如果不是一年的预测, 可能为 其他的多周期的预测 大于 12 个周期或者 小于12个周期
        #首先把60个周期的当做模型clone一份, 然后修改 dis wel rch 文件
        #wel 文件和 rch 文件不需要修改
        shutil.copytree(base.predictModel60,dir) 
        Predict.updateDisFile(modelname,pers)
        
    
    jsondata={"model_name":modelname,"start_time":startTime,"end_time":endTime}
    predictionJson = base.model_dir + modelname +"\\prediction.json"
    with open(predictionJson, "w",encoding='utf-8') as outfile:
        json.dump(jsondata, outfile,ensure_ascii=False)
    
    CalHead.addModelJson(modelname, startTime, endTime, remark)
    return jsonify("创建新模型完毕!")
 
 
#创建新模型
@app.route('/ModelList/', methods=['GET'])
def ModelList():
    file_list = os.listdir(base.model_dir)
    return jsonify(file_list)
 
#模型列表2
@app.route('/ModelList2/', methods=['GET'])
def ModelList2():
    model_path = base.prefix  +"\\model_list.json"
    model_lsit=""
    with open(model_path,encoding='utf-8') as f:
             model_lsit = json.load(f)    
    return jsonify(model_lsit)
 
#删除模型
@app.route('/deleteModel/', methods=['GET'])
def deleteModel():
    model_name = request.args.get('model_name') 
    if not model_name:
         return jsonify({"code":400,"msg":"不允许删除空目录!"}) 
    if model_name == base.not_allowed_model:
         return jsonify({"code":400,"msg":"验证模型不允许删除!"})
   
    paths = base.model_dir + model_name
    shutil.rmtree(paths)  
    CalHead.removeModelJson(model_name)
    return jsonify({"code":200,"msg":"模型删除完毕!"})
 
#预测场景参数
@app.route('/prediction', methods=['POST'])
def prediction():
 
    jsondata = request.get_json()
    model_name = str(jsondata['model_name'])
    file_list = os.listdir(base.model_dir)
    if model_name not in file_list:
        return jsonify("模型不存在,保存失败!")
 
    predictionJson = base.model_dir + model_name +"\\prediction.json"
    with open(predictionJson, "w",encoding='utf-8') as outfile:
        json.dump(jsondata, outfile,ensure_ascii=False)
    
    #运行模型
    dicts = Predict.run_model(model_name)     
    return jsonify(dicts["msg"])
 
 
 
#预测场景参数
@app.route('/predictionparam', methods=['GET'])
def predictionparam():
 
    model_name = request.args.get('model_name')     
    print(model_name)
    file_list = os.listdir(base.model_dir)
    if model_name not in file_list:
        return jsonify("模型不存在!")
    
    predictiondata=""
    prediction_path = base.model_dir + model_name +"\\prediction.json"
    if os.path.exists(prediction_path):
        with open(prediction_path,encoding='utf-8') as f:
             predictiondata = json.load(f)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
    welldata=""
    well_path = base.model_dir + model_name +"\\pump_well.json"
    
    if os.path.exists(well_path):
        with open(well_path,encoding='utf-8') as f:
             welldata = json.load(f)         
 
    if not welldata and not predictiondata:
        return jsonify([])
    
    if not predictiondata:
         return jsonify(welldata)
    
    if not welldata:
         return jsonify(predictiondata)
        
    merged_dict = {**predictiondata, **welldata}  
    
    return jsonify(merged_dict)
 
 
 
#预测场景--保存井
@app.route('/pumpsavewell', methods=['POST'])
def pump_savewell():
 
    jsondata = request.get_json()
    model_name = str(jsondata['model_name'])
    file_list = os.listdir(base.model_dir)
    if model_name not in file_list:
        return jsonify("模型不存在,保存失败!")
 
    pump_json = base.model_dir + model_name +"\\pump_well.json"
    with open(pump_json, "w") as outfile:
        json.dump(jsondata, outfile)
         
    return jsonify("保存井参数完毕!")
 
#预测场景--导入井数据
@app.route('/pumpimportdata', methods=['POST'])
def pump_importdata():
            
    model_name = request.form.get('model_name')   
    types = request.form.get('type')   
    file = request.files.get('file')
    print(types)
    
    save_path = base.model_dir + model_name +"\\"+types+".xlsx"
    print(save_path)
   
    if file: 
        file.save(save_path)
    
    data= DataTransf.base_excel(model_name,types)
    
    resultDict={"code":200,"msg":"保存数据完毕!","data":data}
    return jsonify(resultDict)
 
#观测井列表
@app.route('/obsWellList', methods=['GET'])
def obsWellList():
    obswell= base.obs_well
    dicts =[]
    for wellId, name , row ,column in obswell:
        obj ={"wellId":wellId,"name":name,"row":row,"column":column,"Layer":1}    
        dicts.append(obj)
    
    return jsonify(dicts)
    
 
#观测井chart数据接口
@app.route('/obsWellChart', methods=['GET'])
def obsWellChart():
    model_name = request.args.get('model_name') 
    row = request.args.get('row')  
    column = request.args.get('column')  
    wellId = request.args.get('wellId')  
 
    result = CalHead.obsChartdata(wellId,model_name, row, column)
   
    return jsonify(result)
 
 
#预测页面 永定河图表
@app.route('/predictRiverChart', methods=['GET'])
def predictRiverChart():
    base_year = request.args.get('base_year') 
    start_time = request.args.get('start_time')  
    end_time = request.args.get('end_time')  
    value = float(request.args.get('value')) 
    return jsonify(Predict.predict_river_chart(base_year, start_time, end_time,value))
 
#预测页面 降水图表
@app.route('/predictWaterChart', methods=['GET'])
def predictWaterChart():
    base_year = request.args.get('base_year') 
    start_time = request.args.get('start_time')  
    end_time = request.args.get('end_time') 
    value = float(request.args.get('value')) 
    return jsonify(Predict.predict_water_chart(base_year, start_time, end_time,value))
 
#开采量的折线图
@app.route('/predictWellChart', methods=['POST'])
def predictWellChart():
    
    json = request.get_json()
    base_year = str(json['base_year'])
    start_time = json['start_time']
    end_time = json['end_time']
    data = json['data'] 
  
    return jsonify(Predict.predict_well_chart(base_year, start_time, end_time,data))
 
#流场图
@app.route('/flowField', methods=['GET'])
def flowField():
    model_name = request.args.get('model_name') 
    flowStartTime = int(request.args.get('flowStartTime')) 
    flowEndTime=int(request.args.get('flowEndTime')) 
    flowType= request.args.get('flowType')
    # layer = int(request.args.get('layer') ) 
    
    pic = str(int(time.time())) +".png"   
    outpath = base.flow_file + pic
    dicts={}
    if flowType=="水位":
        dicts = achiveReport.flow_field(model_name, flowStartTime, 0,"流场信息", "online", outpath)
    if flowType=="变幅":
        dicts = achiveReport.getFlowFieldBF(model_name,flowStartTime,flowEndTime,outpath)
       
    if flowType=="埋深":
       dicts = achiveReport.getFlowFieldDepth(model_name,flowStartTime, 0,"流场信息", "online", outpath)   
     
    dicts["path"] = "/xishan/xinshanFlow/"+pic
    return jsonify(dicts)
 
 
#初始水位流场信息
@app.route('/initWaterFlow/', methods=['GET'])
def initWater():
    
    model_name = request.args.get('model_name')  
    layer = int(request.args.get('layer') ) 
    pic = str(int(time.time())) +".png"
    outpath = base.flow_file + pic
    result=  achiveReport.init_flow_field(model_name, layer,"初始流场信息", "online", outpath)
    if result == "#":
         return jsonify("")   
    return jsonify("/xishan/xinshanFlow/"+pic)
 
 
#降水均衡
@app.route('/waterEqu', methods=['GET'])
def waterEqu():
    model_name = request.args.get('model_name') 
    data =  CalHead.waterEqu(model_name)
    return jsonify(data)
 
 
#地球页面数据
@app.route('/earthWaterChart', methods=['GET'])
def earthWaterChart():
    model_name = request.args.get('model_name')
    indexId = int(request.args.get('index_id')) 
    data =  CalHead.earthWaterChart(model_name,indexId)
    return jsonify(data)
 
#渗透系数
@app.route('/mdLpf', methods=['GET'])
def mdLpf():    
    lf = base.md_lpf 
    return jsonify(np.array(lf).tolist())
 
#水资源量
@app.route('/water_res', methods=['GET'])
def water_res():    
    model_name = request.args.get('model_name')     
    #水均衡
    path1=base.muiltyModel + model_name +"\\water_bal.txt"  
    bal = CalHead.water_balance(model_name, path1) 
    path2=base.muiltyModel + model_name +"\\water_res.txt" 
    res =  CalHead.water_res(model_name,path2) 
    
    dicts =  BigData.mergeWaterData(bal,res)
 
    initFlowPNG = achiveReport.getWaterResFiled(model_name,0)
    dicts["initFlowPNG"]= "/xishan/xinshanFlow/" + initFlowPNG   
    
    FlowPNG2 = achiveReport.getWaterResFiled(model_name,11)
    dicts["lastFlowPNG"]= "/xishan/xinshanFlow/" + FlowPNG2 
    dicts["initMonth"] ="2023-01"
    dicts["lastMonth"] ="2023-12"
    
    #水资源量
    return dicts
 
 
#多模型地下水位
@app.route('/water_depth', methods=['GET'])
def water_depth():    
    model_name = request.args.get('model_name')     
 
    result = CalHead.water_depth(model_name)
    #水资源量
    return result
 
 
#小场景 单个模型水位 和变幅
@app.route('/xs_depth', methods=['GET'])
def xs_depth():    
    model_name = request.args.get('model_name')     
 
    res = CalHead.xs_depth(model_name)
    jsondata= CalHead.get_model_json(model_name)
    start_time = jsondata["start_time"]
    end_time = jsondata["end_time"] 
    months = ModelPeriod.get_months_in_range_ym(start_time, end_time)
    res["months"] = months
    #水资源量
    return res
 
#保存监测站降雨量
@app.route('/sensor_jyl_list', methods=['GET'])
def sensor_jyl_list():    
    model_name = request.args.get('model_name')     
    data = OpenExcel.read_excel(model_name)
    return jsonify(data)
 
#保存监测站降雨量
@app.route('/sensor_jyl_save', methods=['POST'])
def sensor_jyl_save():   
    json = request.get_json()
    model_name = str(json['model_name'])
    data = json['data'] 
    OpenExcel.write_excel(model_name,data)
    return jsonify("保存完毕")
 
#月报内容
@app.route('/xs_month_report', methods=['GET'])
def xs_month_report():   
    model_name = request.args.get('model_name') 
    per = int(request.args.get('period'))
    res = achiveReport.archive_report_content(model_name,per)
    return res
 
 
#实时数据
@app.route('/xs_real_data', methods=['GET'])
def xs_real_data():   
    num = request.args.get('num')
    start_time = request.args.get('start_time')
    end_time = request.args.get('end_time')
    types = request.args.get('types')
    res = DataTask.get_data(types,num,start_time,end_time)
    return jsonify(res)
 
 
if __name__ == '__main__':
    #app.run()    # 可以指定运行的主机IP地址,端口,是否开启调试模式
    app.run(host="localhost", port=5000)