var EPSLN = 1.0e-10; var msfnz = require('../common/msfnz'); var tsfnz = require('../common/tsfnz'); var HALF_PI = Math.PI/2; var sign = require('../common/sign'); var adjust_lon = require('../common/adjust_lon'); var phi2z = require('../common/phi2z'); exports.init = function() { // array of: r_maj,r_min,lat1,lat2,c_lon,c_lat,false_east,false_north //double c_lat; /* center latitude */ //double c_lon; /* center longitude */ //double lat1; /* first standard parallel */ //double lat2; /* second standard parallel */ //double r_maj; /* major axis */ //double r_min; /* minor axis */ //double false_east; /* x offset in meters */ //double false_north; /* y offset in meters */ if (!this.lat2) { this.lat2 = this.lat1; } //if lat2 is not defined if (!this.k0) { this.k0 = 1; } this.x0 = this.x0 || 0; this.y0 = this.y0 || 0; // Standard Parallels cannot be equal and on opposite sides of the equator if (Math.abs(this.lat1 + this.lat2) < EPSLN) { return; } var temp = this.b / this.a; this.e = Math.sqrt(1 - temp * temp); var sin1 = Math.sin(this.lat1); var cos1 = Math.cos(this.lat1); var ms1 = msfnz(this.e, sin1, cos1); var ts1 = tsfnz(this.e, this.lat1, sin1); var sin2 = Math.sin(this.lat2); var cos2 = Math.cos(this.lat2); var ms2 = msfnz(this.e, sin2, cos2); var ts2 = tsfnz(this.e, this.lat2, sin2); var ts0 = tsfnz(this.e, this.lat0, Math.sin(this.lat0)); if (Math.abs(this.lat1 - this.lat2) > EPSLN) { this.ns = Math.log(ms1 / ms2) / Math.log(ts1 / ts2); } else { this.ns = sin1; } if (isNaN(this.ns)) { this.ns = sin1; } this.f0 = ms1 / (this.ns * Math.pow(ts1, this.ns)); this.rh = this.a * this.f0 * Math.pow(ts0, this.ns); if (!this.title) { this.title = "Lambert Conformal Conic"; } }; // Lambert Conformal conic forward equations--mapping lat,long to x,y // ----------------------------------------------------------------- exports.forward = function(p) { var lon = p.x; var lat = p.y; // singular cases : if (Math.abs(2 * Math.abs(lat) - Math.PI) <= EPSLN) { lat = sign(lat) * (HALF_PI - 2 * EPSLN); } var con = Math.abs(Math.abs(lat) - HALF_PI); var ts, rh1; if (con > EPSLN) { ts = tsfnz(this.e, lat, Math.sin(lat)); rh1 = this.a * this.f0 * Math.pow(ts, this.ns); } else { con = lat * this.ns; if (con <= 0) { return null; } rh1 = 0; } var theta = this.ns * adjust_lon(lon - this.long0); p.x = this.k0 * (rh1 * Math.sin(theta)) + this.x0; p.y = this.k0 * (this.rh - rh1 * Math.cos(theta)) + this.y0; return p; }; // Lambert Conformal Conic inverse equations--mapping x,y to lat/long // ----------------------------------------------------------------- exports.inverse = function(p) { var rh1, con, ts; var lat, lon; var x = (p.x - this.x0) / this.k0; var y = (this.rh - (p.y - this.y0) / this.k0); if (this.ns > 0) { rh1 = Math.sqrt(x * x + y * y); con = 1; } else { rh1 = -Math.sqrt(x * x + y * y); con = -1; } var theta = 0; if (rh1 !== 0) { theta = Math.atan2((con * x), (con * y)); } if ((rh1 !== 0) || (this.ns > 0)) { con = 1 / this.ns; ts = Math.pow((rh1 / (this.a * this.f0)), con); lat = phi2z(this.e, ts); if (lat === -9999) { return null; } } else { lat = -HALF_PI; } lon = adjust_lon(theta / this.ns + this.long0); p.x = lon; p.y = lat; return p; }; exports.names = ["Lambert Tangential Conformal Conic Projection", "Lambert_Conformal_Conic", "Lambert_Conformal_Conic_2SP", "lcc"];