var e0fn = require('../common/e0fn'); var e1fn = require('../common/e1fn'); var e2fn = require('../common/e2fn'); var e3fn = require('../common/e3fn'); var mlfn = require('../common/mlfn'); var adjust_lon = require('../common/adjust_lon'); var HALF_PI = Math.PI/2; var EPSLN = 1.0e-10; var sign = require('../common/sign'); var asinz = require('../common/asinz'); exports.init = function() { this.e0 = e0fn(this.es); this.e1 = e1fn(this.es); this.e2 = e2fn(this.es); this.e3 = e3fn(this.es); this.ml0 = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, this.lat0); }; /** Transverse Mercator Forward - long/lat to x/y long/lat in radians */ exports.forward = function(p) { var lon = p.x; var lat = p.y; var delta_lon = adjust_lon(lon - this.long0); var con; var x, y; var sin_phi = Math.sin(lat); var cos_phi = Math.cos(lat); if (this.sphere) { var b = cos_phi * Math.sin(delta_lon); if ((Math.abs(Math.abs(b) - 1)) < 0.0000000001) { return (93); } else { x = 0.5 * this.a * this.k0 * Math.log((1 + b) / (1 - b)); con = Math.acos(cos_phi * Math.cos(delta_lon) / Math.sqrt(1 - b * b)); if (lat < 0) { con = -con; } y = this.a * this.k0 * (con - this.lat0); } } else { var al = cos_phi * delta_lon; var als = Math.pow(al, 2); var c = this.ep2 * Math.pow(cos_phi, 2); var tq = Math.tan(lat); var t = Math.pow(tq, 2); con = 1 - this.es * Math.pow(sin_phi, 2); var n = this.a / Math.sqrt(con); var ml = this.a * mlfn(this.e0, this.e1, this.e2, this.e3, lat); x = this.k0 * n * al * (1 + als / 6 * (1 - t + c + als / 20 * (5 - 18 * t + Math.pow(t, 2) + 72 * c - 58 * this.ep2))) + this.x0; y = this.k0 * (ml - this.ml0 + n * tq * (als * (0.5 + als / 24 * (5 - t + 9 * c + 4 * Math.pow(c, 2) + als / 30 * (61 - 58 * t + Math.pow(t, 2) + 600 * c - 330 * this.ep2))))) + this.y0; } p.x = x; p.y = y; return p; }; /** Transverse Mercator Inverse - x/y to long/lat */ exports.inverse = function(p) { var con, phi; var delta_phi; var i; var max_iter = 6; var lat, lon; if (this.sphere) { var f = Math.exp(p.x / (this.a * this.k0)); var g = 0.5 * (f - 1 / f); var temp = this.lat0 + p.y / (this.a * this.k0); var h = Math.cos(temp); con = Math.sqrt((1 - h * h) / (1 + g * g)); lat = asinz(con); if (temp < 0) { lat = -lat; } if ((g === 0) && (h === 0)) { lon = this.long0; } else { lon = adjust_lon(Math.atan2(g, h) + this.long0); } } else { // ellipsoidal form var x = p.x - this.x0; var y = p.y - this.y0; con = (this.ml0 + y / this.k0) / this.a; phi = con; for (i = 0; true; i++) { delta_phi = ((con + this.e1 * Math.sin(2 * phi) - this.e2 * Math.sin(4 * phi) + this.e3 * Math.sin(6 * phi)) / this.e0) - phi; phi += delta_phi; if (Math.abs(delta_phi) <= EPSLN) { break; } if (i >= max_iter) { return (95); } } // for() if (Math.abs(phi) < HALF_PI) { var sin_phi = Math.sin(phi); var cos_phi = Math.cos(phi); var tan_phi = Math.tan(phi); var c = this.ep2 * Math.pow(cos_phi, 2); var cs = Math.pow(c, 2); var t = Math.pow(tan_phi, 2); var ts = Math.pow(t, 2); con = 1 - this.es * Math.pow(sin_phi, 2); var n = this.a / Math.sqrt(con); var r = n * (1 - this.es) / con; var d = x / (n * this.k0); var ds = Math.pow(d, 2); lat = phi - (n * tan_phi * ds / r) * (0.5 - ds / 24 * (5 + 3 * t + 10 * c - 4 * cs - 9 * this.ep2 - ds / 30 * (61 + 90 * t + 298 * c + 45 * ts - 252 * this.ep2 - 3 * cs))); lon = adjust_lon(this.long0 + (d * (1 - ds / 6 * (1 + 2 * t + c - ds / 20 * (5 - 2 * c + 28 * t - 3 * cs + 8 * this.ep2 + 24 * ts))) / cos_phi)); } else { lat = HALF_PI * sign(y); lon = this.long0; } } p.x = lon; p.y = lat; return p; }; exports.names = ["Transverse_Mercator", "Transverse Mercator", "tmerc"];